Matrix-free Krylov iteration for implicit convolution of numerically low-rank data
نویسندگان
چکیده
منابع مشابه
Orthogonal Rank-One Matrix Pursuit for Low Rank Matrix Completion
In this paper, we propose an efficient and scalable low rank matrix completion algorithm. The key idea is to extend orthogonal matching pursuit method from the vector case to the matrix case. We further propose an economic version of our algorithm by introducing a novel weight updating rule to reduce the time and storage complexity. Both versions are computationally inexpensive for each matrix ...
متن کاملCLRMA: Compact Low Rank Matrix Approximation for Data Compression
Low-rank matrix approximation (LRMA) is a powerful technique for signal processing and pattern analysis. However, its potential for data compression has not yet been fully investigated in the literature. In this paper, we propose sparse lowrank matrix approximation (SLRMA), an effective computational tool for data compression. SLRMA extends the conventional LRMA by exploring both the intraand i...
متن کاملLow-Rank and Sparse Matrix Decomposition for Genetic Interaction Data
BACKGROUND Epistatic miniarray profile (EMAP) studies have enabled the mapping of large-scale genetic interaction networks and generated large amounts of data in model organisms. One approach to analyze EMAP data is to identify gene modules with densely interacting genes. In addition, genetic interaction score (S score) reflects the degree of synergizing or mitigating effect of two mutants, whi...
متن کاملKrylov subspace iteration
In the simulation of continuous events, such as the ow of a uid through a pipe, or the ow of air around an aircraft, one usually imposes a grid over the area of interest and one restricts oneself to the computation of relevant parameters, for instance the pressure or the velocity of the ow or the temperature, in the gridpoints. Physical laws lead to approximate relations between these parameter...
متن کاملLow-Rank Tensor Krylov Subspace Methods for Parametrized Linear Systems
We consider linear systems A(α)x(α) = b(α) depending on possibly many parameters α = (α1, . . . ,αp). Solving these systems simultaneously for a standard discretization of the parameter space would require a computational effort growing exponentially in the number of parameters. We show that this curse of dimensionality can be avoided for sufficiently smooth parameter dependencies. For this pur...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational and Applied Mathematics
سال: 2016
ISSN: 0377-0427
DOI: 10.1016/j.cam.2016.05.005