Matrix-free Krylov iteration for implicit convolution of numerically low-rank data

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Orthogonal Rank-One Matrix Pursuit for Low Rank Matrix Completion

In this paper, we propose an efficient and scalable low rank matrix completion algorithm. The key idea is to extend orthogonal matching pursuit method from the vector case to the matrix case. We further propose an economic version of our algorithm by introducing a novel weight updating rule to reduce the time and storage complexity. Both versions are computationally inexpensive for each matrix ...

متن کامل

CLRMA: Compact Low Rank Matrix Approximation for Data Compression

Low-rank matrix approximation (LRMA) is a powerful technique for signal processing and pattern analysis. However, its potential for data compression has not yet been fully investigated in the literature. In this paper, we propose sparse lowrank matrix approximation (SLRMA), an effective computational tool for data compression. SLRMA extends the conventional LRMA by exploring both the intraand i...

متن کامل

Low-Rank and Sparse Matrix Decomposition for Genetic Interaction Data

BACKGROUND Epistatic miniarray profile (EMAP) studies have enabled the mapping of large-scale genetic interaction networks and generated large amounts of data in model organisms. One approach to analyze EMAP data is to identify gene modules with densely interacting genes. In addition, genetic interaction score (S score) reflects the degree of synergizing or mitigating effect of two mutants, whi...

متن کامل

Krylov subspace iteration

In the simulation of continuous events, such as the ow of a uid through a pipe, or the ow of air around an aircraft, one usually imposes a grid over the area of interest and one restricts oneself to the computation of relevant parameters, for instance the pressure or the velocity of the ow or the temperature, in the gridpoints. Physical laws lead to approximate relations between these parameter...

متن کامل

Low-Rank Tensor Krylov Subspace Methods for Parametrized Linear Systems

We consider linear systems A(α)x(α) = b(α) depending on possibly many parameters α = (α1, . . . ,αp). Solving these systems simultaneously for a standard discretization of the parameter space would require a computational effort growing exponentially in the number of parameters. We show that this curse of dimensionality can be avoided for sufficiently smooth parameter dependencies. For this pur...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Computational and Applied Mathematics

سال: 2016

ISSN: 0377-0427

DOI: 10.1016/j.cam.2016.05.005